Teksvideo. Di sini ada pertanyaan daerah penyelesaian dari sistem pertidaksamaan berikut adalah Sekarang kita akan perhatikan x kuadrat nya di sini x kuadrat yaitu minus berarti grafik itu tertutup atau berbentuk seperti n dan kita akan menentukan titik puncak dari fungsi yang pertama rumus titik puncak untuk X Puncak adalah minus bp2ap Puncak minus b kuadrat minus 4 Aceh perempata setelah Kelas 10 SMASistem Pertidaksamaan Dua VariabelSistem Pertidaksamaan Dua VariabelGambarlah daerah penyelesaian dari sistem pertidaksamaan linear berikut untuk x, y e R. x-5y>=10, x>=5Sistem Pertidaksamaan Dua VariabelSistem Pertidaksamaan Dua VariabelAljabarMatematikaRekomendasi video solusi lainnya0323Perhatikan grafik di bawah ini. Daerah penyelesaian dari ...0404Sistem pertidaksamaan linear untuk daerah yang diarsir pa...0232Sistem pertidaksamaan untuk daerah penyelesaian berikut i...0326Perhatikan gambar berikut 12 4 4 8 Daerah yang diarsir p...Teks videountuk soal ini kita harus menentukan daerah himpunan penyelesaian dari sistem pertidaksamaan maka pertama-tama kita harus Mengubah sistem pertidaksamaan ke dalam bentuk persen menjadi X dikurang 5 y = 10 kemudian x = 5 persamaan yang pertama kita akan mencari titik potong pada sumbu x nya dan titik potong pada sumbu y untuk sumbu x nilai y = 0 dan untuk sumbu y nilai x sama dengan nol ketika kita masukkan nilai y sama dengan nol maka kita dapatkan nilai x = 10 Kemudian untuk nilai x = 00 dikurang 5 y = 10 Min 5 y = 10 maka y = min 2 maka koordinat titik potongnya adalah 10 koma 0 dan 0 koma min duadari kedua titik order ini bisa kita Gambarkan grafiknya sebagai berikut serta untuk nilai x = 5 untuk menentukan daerah himpunan penyelesaian nya disini kita melakukan uji daerah dengan mengambil sebuah titik saya mengambil titik 0,0 untuk gambar ini digambarkan dengan garis yang tegas karena yang digunakan adalah lebih besar sama dengan sehingga garis tersebut juga merupakan himpunan penyelesaiannya masukkan nilai x = 0 dan y = 0 ke dalam persamaan yang pertama kita dapatkan hasilnya 00 lebih besar sama dengan 10 sekarang kita cek Apakah 0 lebih besar sama dengan 10 ternyata tidak jadi daerah tersebut bukanlah daerah himpunan penyelesaian bagi garis yang berwarna biru maka dapat kita arsir daerah tersebut karena bukan merupakan himpunan penyelesaiannya Lalu ada sebuah surat lainnyayakni X lebih besar sama dengan 5 jadi yang kita ambil ada daerah sebelah kanan dari garis yang berwarna hijau sehingga daerah sebelah kiri bisa kita maka himpunan penyelesaiannya adalah daerah yang berwarna putih sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul 1 Tentukan daerah himpunan penyelesaian untuk sistem pertidaksamaan -2x+3y≥6, x+2y≥6, x+y≤5. Langkah pertama yaitu tentukan gambar garis pada pertidaksamaan yang di ketahui, dengan mengubahnya menjadi persamaan dan memasukkan masing-masing nilai x=0 dan y=0: Perbesar
Blog Koma - Setelah sebelumnya kita mempelajari materi sistem persamaan yaitu sistem persamaan linear dan kuadrat. Kita lanjutkan salah satu materi matematika peminatan untuk kelas X yaitu sistem pertidaksamaan yaitu linear dan kuadrat. Pada artikel ini kita akan membahas Sistem Pertidaksamaan Linear dan Kuadrat. Untuk sistem persamaan linear dan linear dua variabel tidak kita bahas karena sudah dibahas pada materi program linear beserta dengan soal ceritanya. Pada pembahasan materi Sistem Pertidaksamaan Linear dan Kuadrat ini akan lebih kita tekankan pada penyelesaiannya dimana yang melibatkan dua varibel saja. Penyelesaian yang dibahas terutama dalam bentuk grafik dan daerah arsiran yang menandakan sebagai solusinya. Daerah himpunan penyelesaiannya DHP kita buat dalam bentuk daerah arsiran karena solusi untuk setiap varabelnya ada lebih dari satu dan biasanya dalam semesta bilangan real. Sistem pertidaksamaan melibatkan lebih dari satu pertidaksamaan yang khusu pada artikel ini melibatkan pertidaksamaan linear dua variabel dan pertidaksamaan kuadrat dua variabel. Untuk memudahkan dalam mempelajari materi Sistem Pertidaksamaan Linear dan Kuadrat, sebaiknya teman-teman ingat kembali materi persamaan garis lurus dan grafiknya serta fungsi kuadrat dan cara menggambar grafiknya. Karena kita lebih menekankan solusi sistem pertidaksamaan dalam bentuk grafik dan daerah arsiran, maka kita harus terbiasa dulu dalam menggambar grafiknya. Mari kita simak langsung penjelasannya berikut ini. Menentukan Penyelesaian Sistem Pertidaksamaan Linear dan Kuadrat *. Grafik fungsi linear dan grafik fungsi kuadrat Syarat utama dalam menyelesaikan sistem pertidaksamaan linear dan kuadrat adalah mampu membuat grafiknya terlebih dahulu. Untuk grafik fungsi linear garis lurus silahkan baca materi "Persamaan Garis Lurus dan Grafiknya" dan grafik fungsi kuadrat bisa kita baca pada artikel "Sketsa dan Menggambar Grafik Fungsi Kuadrat" dan "Menggambar Grafik Fungsi Kuadrat dengan Teknik Menggeser". *. Penyelesaian Sistem Pertidaksamaannya Misalkan ada sistem pertidaksamaan linear dan kuadrat $ \left\{ \begin{array}{c} ax+by \geq c \\ dx^2 + ex + fy \leq g \end{array} \right. $ Yang namanya penyelesaian adalah semua himpunan $x,y \, $ yang memenuhi semua pertidaksamaan. Jika nilai $ x \, $ dan $ y \, $ yang diminta adalah bilangan real, maka akan ada tak hingga solusinya yang bisa diwakili oleh suatu daerah arsiran yang memenuhi sistem pertidaksamaannya. Langkah-langkah Menentukan daerah arsiran i. Gambar dulu grafik masing-masing fungsi. ii. Tentukan daerah arsiran setiap pertidaksamaan yang sesuai dengan perminataan soal dengan cara uji sembarang titik. iii. Daerah himpunan penyelesaian dari sistem pertidaksamaan adalah daerah yang memenuhi semua pertidaksamaan dengan cara mengiriskan setiap daerah arsiran setiap pertidaksamaan atau carilah daerah yang memuat arsiran terbanyak. Contoh soal 1. Tentukan himpunan penyelesaian dari pertidaksamaan $ 2x + 3y \geq 12 $? Penyelesaian *. Kita gambar dulu persamaan garis $ 2x + 3y = 12 \, $ menentukan titik potong sumbu-sumbu Sumbu X substitusi $ y = 0 \rightarrow 2x + = 12 \rightarrow 2x = 12 \rightarrow x = 6 $. Sumbu Y substitusi $ x = 0 \rightarrow + 3y = 12 \rightarrow 3y = 12 \rightarrow y = 4 $. Substitusi titik uji yaitu $0,0 \, $ $ \begin{align} x,y=0,0 \rightarrow 2x + 3y & \geq 12 \\ + &\geq 12 \\ 0 & \geq 12 \, \, \, \, \, \, \, \text{SALAH} \end{align} $ Artinya daerah yang memuat titik 0,0 salah bukan solusi yang diminta, sehingga solusinya adalah daerah lawannya yang tidak memuat titik 0,0 atau daerah di atas garis. *. Berikut himpunan penyelesaiannya Keterangan gambar daerah himpunan penyelesaiannya Daerah yang diarsir adalah daerah himpunan penyelesaian $ 2x + 3y \geq 12 \, $, artinya semua himpunan titik $x,y \, $ yang ada didaerah arsiran sebagai solusinya. Daerah yang diarsir sebenarnya semua daerah yang ada di atas garis $ 2x + 3y = 12 \, $ , hanya saja yang diarsir sedikit untuk mewakili bahwa daerah himpunan panyelesaiannya adalah semua daerah di atas garisnya. Catatan Teman-teman bisa mempelajari cara menentukan daerah arsiran lebih lengkap pada materi "Menentukan Daerah Penyelesaian Arsiran sistem Pertidaksamaan". 2. Tentukan Himpunan penyelesaian dari $ y \leq -x^2 + 5x + 6 \, $ ? Penyelesaian *. Kita gambar dulu grafik $ y = -x^2 + 5x + 6 $ menentukan titik potong sumbu-sumbu Sumbu X substitusi $ y = 0 \rightarrow 0 = -x^2 + 5x + 6 \rightarrow -x + 1x-6 = 0 \rightarrow x = 6 \vee x = -1 $. Sumbu Y substitusi $ x = 0 \rightarrow y = -0^2 + + 6 \rightarrow y = 0 $. Nilai $ a = -1 \, $ dari fungsi kuadrat $ y = -x^2 + 5x + 6 \, $ maka grafik hadap ke bawah. Substitusi titik uji yaitu $0,0 \, $ $ \begin{align} x,y=0,0 \rightarrow y & \leq -x^2 + 5x + 6 \\ 0 & \leq -0^2 + + 6 \\ 0 & \leq 6 \, \, \, \, \, \, \, \text{BENAR} \end{align} $ Artinya daerah yang memuat titik 0,0 benar solusi yang diminta, sehingga solusinya adalah daerah di dalam kurva parabola *. Berikut himpunan penyelesaiannya 3. Tentukan himpunan penyelesaian dari sistem pertidaksamaan $ \left\{ \begin{array}{c} 2x + 3y \geq 12 \\ y \leq -x^2 + 5x + 6 \end{array} \right. $ Penyelesaian *. Karena ada dua pertidaksamaannya, maka kita harus menentukan daerah arsiran yang memenuhi keduanya yang nantinya akan menjadi himpunan penyelesaian dari sistem pertidaksamaan pada soal nomor 3 ini. *. Berdasarkan jawaban soal nomor 1 dan nomor 2 di atas, maka daerah arisan yang diminta yang memenuhi keduanya yaitu 4. Tentukan himpunan penyelesaian dari sistem pertidaksamaan $ \left\{ \begin{array}{c} 2x + 3y \geq 12 \\ y \geq -x^2 + 5x + 6 \end{array} \right. $ Penyelesaian Daerah penyelesaiannya adalah daerah irisan dari kedua pertidaksamaan seperti gambar yang paling kanan. 5. Tentukan himpunan penyelesaian dari sistem pertidaksamaan $ \left\{ \begin{array}{c} 2x + 3y \leq 12 \\ y \geq -x^2 + 5x + 6 \end{array} \right. $ Penyelesaian Daerah penyelesaiannya adalah daerah irisan dari kedua pertidaksamaan seperti gambar yang paling kanan. 6. Tentukan himpunan penyelesaian dari sistem pertidaksamaan $ \left\{ \begin{array}{c} 2x + 3y \leq 12 \\ y \leq -x^2 + 5x + 6 \end{array} \right. $ Penyelesaian Daerah penyelesaiannya adalah daerah irisan dari kedua pertidaksamaan seperti gambar yang paling kanan. Dari contoh soal nomor 3 sampai 6 sengaja kita ubah tanda ketaksamaannya saja agar teman-teman mahir dalam mengerjakan soal-soal yang ada dengan berbagai tipe tanda ketaksamaan. 7. Tentukan sistem pertidaksamaan yang ditunjukan oleh daerah himpunan penyelesaian yang ditunjukkan seperti gambar berikut ini. Penyelesaian *. Kita substitusi sembarang titik dari masing-masing kurva Kurva $ 2x - 3y = 12 \, $ , kita substitusi $0,-6 \, $ yang berada pada daerah penyelesaian, $ \begin{align} x,y=0,-6 \rightarrow 2x - 3y & = 12 \\ - 3.-6 & = 12 \\ 0 + 18 & = 12 \\ 18 & \geq 12 \end{align} $ Artinya pertidaksamaannya adalah $ 2x - 3y \geq 12 $ Kurva $ y = x^2 - 2x - 8 \, $ , kita substitusi $0,0 \, $ yang berada pada daerah penyelesaian, $ \begin{align} x,y=0,0 \rightarrow y & = x^2 - 2x - 8 \\ 0 & = 0^2 - - 8 \\ 0 & = - 8 \\ 0 & \geq - 8 \end{align} $ Artinya pertidaksamaannya adalah $ y \geq x^2 - 2x - 8 $ Jadi, sistem pertidaksamaannya adalah $ \left\{ \begin{array}{c} 2x - 3y \geq 12 \\ y \geq x^2 - 2x - 8 \end{array} \right. $ Untuk materi selanjutnya, silahkan baca tentang "sistem pertidaksamaan kuadrat dan kuadrat".

Daerahx yang menjadi penyelesaian dari sistem pertidaksamaan y≤2x+5 dan y≥x2−x−23 adalah SD Matematika Bahasa Indonesia IPA Terpadu Penjaskes PPKN IPS Terpadu Seni Agama Bahasa Daerah

1 Menentukan daerah penyelesaian dari sistem pertidaksamaan linear - kuadrat dua variabel dengan tepat. 2. Memecahkan masalah yang berkaitan dengan Sistem Pertidaksamaan linier -kuadrat dua variabel. 3. Menyelesaikan masalah yang berkaitan dengan sistem persamaan linier - kuadrat dua variable kedalam bidang cartesius. D. Materi Pembelajaran Penyelesaian: 1. Ubah soal dalam bentuk umum pertidaksamaan pecahan (ruas kanan nol) 3. Menggambar nilai-nilai pembuat nol pada garis bilangan dan langsung menentukan daerah penyelesaiannya. Dalam garis bilangan terdapat 4 interval : x ≤ -4, -4 ≤ x < -2,-2 < x < -1 dan x > -1. 4.
Daerahx yang menjadi penyelesaian dari sistem pertidaksamaan y>=x^2+5x-12 dan y
KfRs4s.
  • 8khayb4bos.pages.dev/154
  • 8khayb4bos.pages.dev/515
  • 8khayb4bos.pages.dev/588
  • 8khayb4bos.pages.dev/388
  • 8khayb4bos.pages.dev/15
  • 8khayb4bos.pages.dev/150
  • 8khayb4bos.pages.dev/568
  • 8khayb4bos.pages.dev/352
  • daerah x yang menjadi penyelesaian dari sistem pertidaksamaan